82 research outputs found

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups

    Get PDF
    Evaluation and communication of the relative degree of certainty in assessment findings are key cross-cutting issues for the three Working Groups of the Intergovernmental Panel on Climate Change. A goal for the Fifth Assessment Report, which is currently under development, is the application of a common framework with associated calibrated uncertainty language that can be used to characterize findings of the assessment process. A guidance note for authors of the Fifth Assessment Report has been developed that describes this common approach and language, building upon the guidance employed in past Assessment Reports. Here, we introduce the main features of this guidance note, with a focus on how it has been designed for use by author teams. We also provide perspectives on considerations and challenges relevant to the application of this guidance in the contribution of each Working Group to the Fifth Assessment Report. Despite the wide spectrum of disciplines encompassed by the three Working Groups, we expect that the framework of the new uncertainties guidance will enable consistent communication of the degree of certainty in their policy-relevant assessment findings

    Loss and damage and limits to adaptation: recent IPCC insights and implications for climate science and policy

    Get PDF
    Recent evidence shows that climate change is leading to irreversible and existential impacts on vulnerable communities and countries across the globe. Among other effects, this has given rise to public debate and engagement around notions of climate crisis and emergency. The Loss and Damage (L&D) policy debate has emphasized these aspects over the last three decades. Yet, despite institutionalization through an article on L&D by the United Nations Framework Convention on Climate Change (UNFCCC) in the Paris Agreement, the debate has remained vague, particularly with reference to its remit and relationship to adaptation policy and practice. Research has recently made important strides forward in terms of developing a science perspective on L&D. This article reviews insights derived from recent publications by the Intergovernmental Panel on Climate Change (IPCC) and others, and presents the implications for science and policy. Emerging evidence on hard and soft adaptation limits in certain systems, sectors and regions holds the potential to further build momentum for climate policy to live up to the Paris ambition of stringent emission reductions and to increase efforts to support the most vulnerable. L&D policy may want to consider actions to extend soft adaptation limits and spur transformational, that is, non-standard risk management and adaptation, so that limits are not breached. Financial, technical, and legal support would be appropriate for instances where hard limits are transgressed. Research is well positioned to further develop robust evidence on critical and relevant risks at scale in the most vulnerable countries and communities, as well as options to reduce barriers and limits to adaptation

    Apparent Temperature and Cause-Specific Emergency Hospital Admissions in Greater Copenhagen, Denmark

    Get PDF
    One of the key climate change factors, temperature, has potentially grave implications for human health. We report the first attempt to investigate the association between the daily 3-hour maximum apparent temperature (Tappmax) and respiratory (RD), cardiovascular (CVD), and cerebrovascular (CBD) emergency hospital admissions in Copenhagen, controlling for air pollution. The study period covered 1 January 2002−31 December 2006, stratified in warm and cold periods. A case-crossover design was applied. Susceptibility (effect modification) by age, sex, and socio-economic status was investigated. For an IQR (8°C) increase in the 5-day cumulative average of Tappmax, a 7% (95% CI: 1%, 13%) increase in the RD admission rate was observed in the warm period whereas an inverse association was found with CVD (−8%, 95% CI: −13%, −4%), and none with CBD. There was no association between the 5-day cumulative average of Tappmax during the cold period and any of the cause-specific admissions, except in some susceptible groups: a negative association for RD in the oldest age group and a positive association for CVD in men and the second highest SES group. In conclusion, an increase in Tappmax is associated with a slight increase in RD and decrease in CVD admissions during the warmer months

    Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change

    Get PDF
    Background The relationship between mosquito development and temperature is one of the keys to understanding the current and future dynamics and distribution of vector-borne diseases such as malaria. Many process-based models use mean air temperature to estimate larval development times, and hence adult vector densities and/or malaria risk. Methods Water temperatures in three different-sized water pools, as well as the adjacent air temperature in lowland and highland sites in western Kenya were monitored. Both air and water temperatures were fed into a widely-applied temperature-dependent development model for Anopheles gambiae immatures, and subsequently their impact on predicted vector abundance was assessed. Results Mean water temperature in typical mosquito breeding sites was 4-6°C higher than the mean temperature of the adjacent air, resulting in larval development rates, and hence population growth rates, that are much higher than predicted based on air temperature. On the other hand, due to the non-linearities in the relationship between temperature and larval development rate, together with a marginal buffering in the increase in water temperature compared with air temperature, the relative increases in larval development rates predicted due to climate change are substantially less. Conclusions Existing models will tend to underestimate mosquito population growth under current conditions, and may overestimate relative increases in population growth under future climate change. These results highlight the need for better integration of biological and environmental information at the scale relevant to mosquito biology

    Addressing vulnerability, building resilience:community-based adaptation to vector-borne diseases in the context of global change

    Get PDF
    Abstract Background The threat of a rapidly changing planet – of coupled social, environmental and climatic change – pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. Main body In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. Conclusion In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present

    Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

    Get PDF
    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity)
    • …
    corecore